Novel Application of Magnetic Resonance Imaging Demonstrates Characteristic Differences in Vasculature at Predilection Sites of Osteochondritis Dissecans
Ferenc Tóth, Mikko J. Nissi, Jutta M. Ellermann, Luning Wang, Kevin G. Shea, John Polousky and Cathy S. Carlson
Am J Sports Med published online August 18, 2015
DOI: 10.1177/0363546515596410

The online version of this article can be found at:
http://ajs.sagepub.com/content/early/2015/08/18/0363546515596410

Published online August 18, 2015 in advance of the print journal.

Email Alerts: http://ajs.sagepub.com/cgi/alerts
Subscriptions: http://ajs.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> OnlineFirst Version of Record - Aug 18, 2015
What is This?
Novel Application of Magnetic Resonance Imaging Demonstrates Characteristic Differences in Vasculature at Predilection Sites of Osteochondritis Dissecans

Ferenc Tóth,† DVM, PhD, Mikko J. Nissi,‡§∥ PhD, Jutta M. Ellermann, † MD, PhD, Luning Wang, † PhD, Kevin G. Shea,### MD, John Polousky, †† MD, and Cathy S. Carlson, † DVM, PhD

Investigation performed at the University of Minnesota, Minneapolis, Minnesota, USA

Background: Understanding the pathogenesis of osteochondrosis/osteochondritis dissecans and other developmental orthopaedic diseases that are thought to occur secondary to defects in vascular supply to growth/epiphyseal cartilage has been hampered by the inability to image the vasculature in this tissue. This is particularly true in human beings due to limitations of current imaging techniques and the lack of availability of appropriate cadaveric samples for histological studies.

Hypothesis: Susceptibility-weighted imaging, an MRI sequence, allows identification of characteristic differences in the vascular architecture in species that are affected by osteochondrosis/osteochondritis dissecans on the femoral condyle (humans and pigs) versus a species that is free of the disease (goat).

Study Design: Controlled laboratory study.

Materials: Distal femora from cadavers of juvenile humans (n = 5), pigs (n = 3), and goats (n = 3) were scanned in a 9.4-T MRI scanner using susceptibility-weighted imaging. Three-dimensional reconstructions were created, and minimum intensity projections were calculated in 3 planes to enhance visualization of the vascular architecture.

Results: Susceptibility-weighted imaging allowed clear visualization of the epiphyseal vasculature in all species. Vascular architecture, with vessels primarily arising from the perichondrium, was similar in humans and pigs, which are predisposed to osteochondrosis/osteochondritis dissecans, and was starkly different from that present in goats, a species in which there are no reports of osteochondrosis/osteochondritis dissecans. Furthermore, vessels in the distal femoral predilection site disappeared with age in humans in a pattern similar to that reported previously in pigs.

Conclusion: Nearly identical vascular architecture at the shared primary predilection site of osteochondrosis/osteochondritis dissecans in the femoral condyles in human beings and pigs suggests that vascular failure, which is known to be central to the pathogenesis of this disease in pigs, may also play a role in humans.

Clinical Relevance: This assumption of a shared pathogenesis is supported by the pattern of disappearance of vessels with age at the primary predilection site of osteochondritis dissecans in humans, which is essentially identical to that which has been reported in pigs. Susceptibility-weighted imaging will likely help further elucidate this potential relationship in the future.

Keywords: osteochondrosis/osteochondritis dissecans; MRI; epiphyseal cartilage; vasculature; cartilage canals; susceptibility-weighted imaging

In vertebrates, the axial skeleton and the appendicular skeleton, along with a portion of the craniofacial bones, are formed by endochondral ossification, the process in which epiphyseal (growth) cartilage is converted to bone. Through this process, the articular-epiphyseal cartilage-complex (AECC), a structure composed of articular cartilage and sub-articular epiphyseal growth cartilage that is present at the ends of growing long bones, forms the adult shape and size of joints. During endochondral ossification, the epiphyseal cartilage relies on a rich vascular supply to deliver nutrients, supply perivascular mesenchymal cells, and maintain the secondary ossification center. Arteries, veins, and capillaries are embedded in a matrix of connective tissue within the epiphyseal cartilage and are collectively termed cartilage canals. The vessels forming the cartilage canals originate either from a dense vascular plexus located in the perichondrium or from the secondary center of ossification. These vessels and the epiphyseal growth cartilage that they supply disappear with age and are absent in adults,
leaving only the articular cartilage covering the ends of the long bones.

Focal failure of endochondral ossification is a hallmark of the developmental orthopaedic disease known as osteochondrosis (OC) and its clinically apparent form osteochondritis dissecans (OCD), a term most frequently used in human medicine. This disease affects both humans and animals at predilection sites that are characteristic of the species, causing formation of intra-articular (osteocartilaginous fragments. Histological studies performed in swine and horses have demonstrated that the earliest lesion of subclinical OC (OC latens) is characterized by locally extensive ischemic necrosis of the epiphyseal cartilage triggered by failure of cartilage canal blood supply. Alterations in the blood supply are also suspected to play a similarly important role in the development of human OCD, but due to limitations of current imaging techniques and the lack of tissue samples from predilection sites in healthy/subclinically affected human beings, the role of altered blood supply has not been investigated in depth. Perhaps more important, subclinical disease is not recognized in human beings, as recognition of the disease depends on a patient presenting with clinical signs of joint pain.

In situ evaluation of the vascular supply to the epiphyseal cartilage in animals is most often performed ex vivo after planned euthanasia by use of various perfusion techniques followed by clearing, micro–computed tomography (µCT), or magnetic resonance imaging (MRI). However, innovative use of susceptibility-weighted imaging (SWI), an MRI sequence that uses both magnitude and phase data to generate image contrast, recently enabled the visualization of this vascular supply at various field strengths in pigs and goats immediately after euthanasia. Femora were cleared of soft tissues, wrapped in saline-soaked paper towels, and stored at −80°C until they were imaged. Human cadaveric knee joints submerged in saline solution were stored at −80°C before being processed for MRI by thawing at room temperature and harvesting distal femora free of soft tissue attachments. MRI of the specimens was conducted on a 9.4-T scanner driven with VnmrJ console (Agilent Technologies), by use of a quadrature volume transceiver coil (Millipede; Varian NMR Systems). The specimens were immersed in perfluoropolyether for clean and susceptibility-matched background. SWI datasets were acquired using a 3-dimensional gradient recalled echo sequence with repetition time of 40 milliseconds, echo time of 14 milliseconds, and receiver bandwidth of 16 kHz. The field of view and imaging matrix were set for each sample to achieve approximately 100-µm isotropic resolution. The acquisition time ranged from 70 to 98 minutes depending on the field of view and matrix settings. Postprocessing of the SWI datasets was done by solving for the underlying susceptibility distribution and using the contrast-inverted, masked susceptibility maps as the source data for visualization of the vascular architecture.

To enhance visualization of the vascular architecture, 2-, 4-, and 5-mm-thick minimum intensity projections were calculated in the sagittal, coronal, and axial planes, respectively. Three-dimensional visualizations of the vasculature were created with OsiriX (OsiriX v.5.6, 64-bit, http://www.osirix-viewer.com/).

The study used only cadaveric specimens. No patient identifiers were used, nor was any information about familial relatives retrieved; therefore, approval from an

METHODS

Three pigs aged 1, 7, and 21 days; 3 goats aged 1, 11, and 19 days; and 5 human cadaveric knee joints harvested from donors aged 1, 3, 4, 24, and 36 months were included in the study. Distal femoral specimens were harvested from pigs and goats immediately after euthanasia. Femora were cleared of soft tissues, wrapped in saline-soaked paper towels, and stored at −80°C until they were imaged. Human cadaveric knee joints submerged in saline solution were stored at −80°C before being processed for MRI by thawing at room temperature and harvesting distal femora free of soft tissue attachments. MRI of the specimens was conducted on a 9.4-T scanner driven with VnmrJ console (Agilent Technologies), by use of a quadrature volume transceiver coil (Millipede; Varian NMR Systems). The specimens were immersed in perfluoropolyether for clean and susceptibility-matched background. SWI datasets were acquired using a 3-dimensional gradient recalled echo sequence with repetition time of 40 milliseconds, echo time of 14 milliseconds, and receiver bandwidth of 16 kHz. The field of view and imaging matrix were set for each sample to achieve approximately 100-µm isotropic resolution. The acquisition time ranged from 70 to 98 minutes depending on the field of view and matrix settings. Postprocessing of the SWI datasets was done by solving for the underlying susceptibility distribution and using the contrast-inverted, masked susceptibility maps as the source data for visualization of the vascular architecture.

To enhance visualization of the vascular architecture, 2-, 4-, and 5-mm-thick minimum intensity projections were calculated in the sagittal, coronal, and axial planes, respectively. Three-dimensional visualizations of the vasculature were created with OsiriX (OsiriX v.5.6, 64-bit, http://www.osirix-viewer.com/).

The study used only cadaveric specimens. No patient identifiers were used, nor was any information about familial relatives retrieved; therefore, approval from an

Address correspondence to Ferenc Tóth, Department of Veterinary Population Medicine, University of Minnesota, 43SH AnSci/VetMed, 1988 Fitch Avenue, St Paul, MN 55108, USA (email: ftoth@umn.edu).

1Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA.
2Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.
3Department of Radiology, Institute of Diagnostics, University of Oulu, Oulu, Finland.
4Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
5Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
6St Luke’s Health System, Boise, Idaho, USA.
7Department of Orthopedics, University of Utah, Salt Lake City, Utah, USA.
8The Rocky Mountain Hospital for Children, Denver, Colorado, USA.
9F.T. and M.J.N. contributed equally to this work (co-first authorship).

One or more of the authors has declared the following potential conflict of interest or source of funding: Funding for the work presented here was provided by National Institutes of Health grants R21AR065385, K18OD010468, and T32 OD010993; Academy of Finland grant 260321; and a Comparative Medicine Faculty Grant at the University of Minnesota.
institutional review board or an institutional animal care and use committee was not necessary.

RESULTS

Results of 3-dimensional reconstruction (Figure 1) of SWI data revealed that in both human beings and pigs, the majority of the vascular supply to the distal femoral epiphysyeal cartilage arises from the perichondrium on both the axial (central) and abaxial (peripheral) aspects of the femoral condyles and then courses toward the midline of the condyle tangentially (parallel to the articular surface). The axial and abaxial vascular beds terminate before reaching the sagittal midline of the condyle, creating an avascular “watershed region.” Conversely, in goats the majority of the vascular supply to the distal femoral epiphysis arises from the secondary ossification center traversing the ossification front and entering the epiphyseal cartilage radially (perpendicular to the articular surface). Findings obtained from 3-dimensional reconstructions were confirmed by evaluating minimum intensity projections reconstructed in the sagittal, axial (transverse), and coronal (dorsal) planes (Figure 2). The vascular architecture in human beings and pigs appears highly similar in the axial (transverse) and coronal (dorsal) planes and is starkly different from that of goats. The presence of a large secondary ossification center in the coronal (dorsal) and sagittal planes in the goat imaged 1 day after birth (Figure 2) indicates that skeletal development in this species is much more advanced at the time of birth than in either pigs or human beings. Evaluation of 3-dimensional reconstructions obtained from human cadaveric samples of increasing age was consistent with earlier disappearance of the axial (central) vascular bed when compared with vessels originating from the abaxial (peripheral) aspect (Figures 1 and 3).

DISCUSSION

Novel application of the SWI MRI sequence enabled detailed evaluation of the vascular architecture of the distal femoral epiphysyeal cartilage in humans and facilitated comparison of the vascular architecture among different species having different susceptibilities to OC/OCD in this site. This imaging technique is presently available on all clinical MRI systems, which typically operate at lower field strengths than research magnets. For in vivo application in human subjects, an MRI system of at least 3 T will be required to allow evaluation of vascular changes suspected to be associated with clinical/subclinical cases of osteochondrosis without the use of contrast media. Clinical use would also necessitate substantial shortening of the excessively long scanning times (70-98 minutes) used ex vivo in the 9.4-T scanner. Our preliminary results suggest that 12- to 15-minute scanning time is adequate to provide valuable data in 7-T research and 3-T clinical systems.

Among the several proposed causes of OC/OCD, including inflammation, osteonecrosis, genetics, repetitive trauma, and vascular failure, results of experimental and epidemiological studies indicate that trauma and vascular failure are 2 of the most important factors in the development of clinically apparent OCD. Studies performed in pigs and horses...
described the presence of ischemic cartilage necrosis at predilection sites of OC/OCD.2,15,18 These areas of necrotic cartilage are considered to be the earliest lesions associated with OC/OCD and are termed as OC latens in the veterinary medical literature.24 As long bone development continues, the epiphyseal growth cartilage is gradually replaced by bone, and during this process, the ossification front reaches the areas of necrotic cartilage. At these sites, the progression of the ossification front and the replacement of the epiphyseal growth cartilage with bone cease or markedly decelerate. Thus, areas of retained necrotic cartilage become apparent as irregularities of the subchondral bone on radiographs or MRI. These radiographically apparent lesions are therefore termed OC manifesta. Interestingly, OC manifesta lesions in pigs and horses show a striking resemblance to findings described as “ossification variants” in MRI results from the maturing femoral condyles in humans.6 Eventually, subclinical lesions of OC (ie, OC latens and OC manifesta) undergo healing, or, if the overlying articular cartilage is exposed to repeated trauma, as is often the case during athletic activities, progression from subclinical (OC) to clinically apparent disease (OCD) occurs.13,11 The cause of vascular failure at the predilection sites of OC/OCD remains to be elucidated, but it may be influenced by regional changes in the extracellular matrix resulting in structural weakness10 or could be due to the forces arising at the bone cartilage interface because of the different biomechanical characteristics of these two tissues.

In this study, SWI was used to demonstrate similarities in the vascular architecture of pigs and humans at the shared predilection site for OC/OCD in the distal femur. The results suggest that vascular changes known to be central in the pathogenesis of OC/OCD in pigs23,26 may also play a role in the pathogenesis of OCD in humans; vessels arising from the perichondrium and coursing axially in pigs and humans are expected to be more prone to fail than the more dense vascular supply composed of numerous shorter vessels arising from the ossification front in goats. Indeed, studies performed in pigs demonstrated that vascular failure leading to ischemic chondronecrosis is most likely to occur at the time of transition from perichondrial to medullary blood supply,24 a process necessary to maintain blood supply to the ever-thinning epiphyseal cartilage as the advancing ossification front overtakes the perichondrial vessels. Given the large secondary center of ossification that was already present in the 1-day-old goat, it is
likely that this transition occurs in goats before birth. In fact, this unique blood supply is likely to contribute to the goats’ lack of susceptibility for developing clinically apparent OCD lesions in horses. Indeed, in pigs, where subclinical OC lesions have been examined histologically, a similar pattern in vascular regression has been directly linked to the development of OC/OCD in the axial aspects of the femoral condyles, evidenced by the very common finding of necrotic cartilage and necrotic cartilage canal vessels at this site. Interestingly, it has been determined that in the tarsocrural joint of horses, one of the predilection sites of OCD (the distal end of the lateral trochlear ridge) tends to retain its vascular supply longer than does the remainder of the talus. Conversely, in the stifle (knee) joint of the same species, the first structure to lose its blood supply is the trochlear groove, one of the primary predilection sites of OCD in this joint. These discrepancies in the rate of disappearance of the blood supply to the epiphyseal cartilage at predilection sites of OC/OCD indicate that other factors, such as trauma along with its timing, play a role in the development of this disease.

Although this study focused on OC/OCD, the MRI technique used here will likely have broad application to other poorly understood developmental orthopaedic diseases with a suspected or known vascular component (eg, Legg-Calvé-Perthes disease, hip dysplasia, and others).

Our study has several limitations. The limited availability of human cadaveric specimens forced us to draw our conclusions from a low number of observations. Previous studies in pigs, horses, and goats, however, have indicated that the vascular supply to epiphyseal cartilage is highly predictable within a species at a given site and age. This limitation also prevented us from more closely matching the ages of pigs, goats, and humans. Comparisons among species were further complicated because, ideally, they should be based on developmental rather than absolute age. This drove the selection of very young goat and pig specimens to be included in the study for comparison to human cadavers that were substantially older. Clearly, a 1-day-old goat is more developmentally mature (based on the size of the secondary ossification center) than a 1-month-old human. Indeed, during individual development, weeks to months in animals, some of which often reach maturity within the first year of life, often translate into years in humans. Finally, the present study is descriptive in nature. From these findings it is not possible to establish a cause-and-effect relationship between the early resolution of vasculature in the axial aspect of the femoral condyle and the development of OCD in human beings.

In conclusion, differences in the cartilage canal blood supply of the distal femoral epiphysis have been identified using susceptibility-weighted MRI in species with different predispositions to OC/OCD. The well-established role that vascular failure plays in the development of OC/OCD in pigs and the similarities of the vascular supply between pigs and humans at their shared predilection site of OC/OCD could imply that vascular failure contributes to the development of human OCD.

Figure 3. Three-dimensional reconstructions of the susceptibility-weighted imaging data obtained from distal femoral specimens of 4-, 24-, and 36-month-old human cadaveric donors demonstrating earlier resolution of the axial (central) vascular bed vs the abaxial (peripheral) one. This area of decreased vascularity in the axial aspect of the femoral condyles (indicated with oval, dotted ellipses in the 24- and 36-month-old specimens) corresponds with the predilection site of osteochondrosis/osteochondritis dissecans. All specimens are oriented with the medial aspect toward the left of the figure.
ACKNOWLEDGMENT

Donation of human cadaveric specimens by Todd Huft and Tom Sicotta (Allosource, Centennial, Colorado) is gratefully acknowledged.

REFERENCES